Lecture 7

Digital Signal Processing

Chapter 5

LTI system Signals in linear systems

Linear time invariant systems

Difference equations:

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

The *z*-transform:

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(n \land k) \implies Y(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}} \cdot X(z) = H(z) X(z)$$
Convolution:

$$y(n) = h(n) * x(n)$$

$$=\sum_{k}h(k)x(n-k)$$

We have two kinds of difference equations.

- An FIR system has $a_k = 0$ for all $k \neq 0$. An FIR system therefore has no feedback. The impulse response is $h(n) = \{ b_0 \ b_1 \ \cdots \ b_M \}$ which is the same as the coefficients of the difference equation.
- An IIR system has $a_k \neq 0$ for some $k \neq 0$. An IIR system therefore has some feedback.

Fourier transform

If h(n) is causal and stable we have the identity

$$H(\omega) = H(z)$$
 where $z = e^{j\omega}$

and therefore

$$Y(\omega) = \frac{b_0 + b_1 e^{-j\omega} + \dots + b_M e^{-j\omega M}}{1 + a_1 e^{-j\omega} + \dots + a_N e^{-j\omega N}} \cdot X(\mathfrak{Y}) = H(\omega)X(\omega)$$

$$H(\omega)$$

Sinusoidal signals and LTI systems

$$x(n) \longrightarrow h(n) \longrightarrow y(n)$$

We want to determine the output signal from an LTI-system, we have two cases;

A) The input signal is causal and the Z-transform exists

We solve this by using the Z-transform, Y(z) = H(z)X(z) and calculate the inverse Z-transform

B) The input signal has (an infinite length) non-causal part

We solve this by using the convolution sum (we cannot use the Ztransform since it does not exist for the input signal)

A) Numerical solution in Matlab

First determine a numerical solution in Matlab.

Given: The input signal

$$x(n) = \cos\left(2\pi \cdot \frac{1}{16} \cdot n\right) \cdot u(n)$$

and the system

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Find: Determine numerically the output signal y(n) = x(n) * h(n).

we had

$$H(z) = \frac{0 + z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

We get y(n) = transient solution + stationary solution.

A) Solution using the *z*-transform

Given: The input signal and the system

$$Y(z) = H(z)X(z) = \frac{N(z)}{D(z)} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \square$$

If we want the whole solution we have to determine the partial fraction expansions $N_1(z)$ and $N_2(z) = C_0 + C_1 z^{-1}$ and do the inverse z-transforms.

$$Y(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Now, using known tables of formulas we get the inverse Z-transform as;

$$y(n) = -0.35 \cdot 0.9^{n} \cdot \cos\left(2\pi \cdot \frac{1}{8} \cdot n\right) + 0.35 \cdot 5.562 \cdot 0.9^{n} \sin\left(2\pi \cdot \frac{1}{8} \cdot n\right)$$

$$Transient$$

$$+ 0.35 \cdot \cos\left(\omega_{0} \cdot n\right) - 0.35 \cdot 2.5392 \cdot \sin\left(\omega_{0} \cdot n\right)$$

$$S tationary$$

Plot the solution in Matlab.

```
>> n = 0:80;
>> yt = -0.35*0.9.^n.*cos(2*pi*n/8) + 0.35*5.562*0.9.^n.*sin(2*pi*n/8);
>> ys = 0.35*cos(2*pi*n/16) - 0.35*2.5392*sin(2*pi*n/16);
>> subplot(3, 1, 1); plot(n, yt);
>> subplot(3, 1, 2); plot(n, ys);
>> subplot(3, 1, 3); plot(n, yt+ys);
```

The transient solution:

The stationary solution:

Compare with slide 18)

The output signal as the sum of the stationary and the transient solutions.

14

We will show that the stationary solution is given by

 $y_{st}(n) = |H(z_0)| \cdot \cos(\omega_0 n + \angle H(z_0))$ where $z_0 = e^{j\omega_0}$

B) Non-causal input signal of infinite length

Solution without the transient state

The sinusoid is started at $n = -\infty$ and the transient part of the solution has now dissipated.

We start with a complex sinusoidal signal, see page 301-306.

$$x_{0}(n) = e^{4j\omega_{0}n} \qquad y_{0}(n) = x_{0}(n) * h(n)$$

$$= \sum_{k=-\infty}^{\infty} h(k)x_{0}(n-k)$$

$$= \sum_{k=-\infty}^{\infty} h(k)e^{j\omega_{0}(n-k)}$$

$$= \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega_{0}k}e^{j\omega_{0}n}$$

$$= H(\omega_{0}) \cdot e^{j\omega_{0}n} = H(\omega_{o}) \cdot \times_{o}(n)$$

For the whole sinusoidal signal, using both terms of Euler's formula, we get

$$x(n) = \cos(\omega_0 n) = \frac{1}{2} \cdot \left[e^{j\omega_0 n} + \cdot e^{-j\omega_0 n} \right] = \frac{1}{2} \cdot \left[x_0(n) + x_0^*(n) \right]$$

$$y(n) = \frac{1}{2} \cdot \left[H(\omega_0) \cdot e^{j\omega_0 n} + H^*(\omega_0) \cdot e^{-j\omega_0 n} \right]$$

 $= |H(\omega_0)| \cdot \cos(\omega_0 n + \angle H(\omega_0))$

In Matlab;

>> w0 = 2*pi/16; >> num = exp(-i*w0) - exp(-i*2*w0); >> den = 1-1.27*exp(-i*w0)+0.81*exp(-i*2*w0); >> H0 = num/den; >> abs(H0), angle(H0) Recall, we had;

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Z->ejws

ans = 0.9546 ans =

1.1956

$$y_{st}(n) = 0.95 \cdot \cos(\omega_0 n - 1.19)$$

Compare with slide 14)

NOTE: This only applies after any initial conditions have dissipated from the system. For an FIR filter of length *L*, this is after L-1 samples. This is called the stationary solution, or the *steady state* solution.

NOTE: This only applies for sinusoidal signals, or for a composite signal (the sum of two or more sinusoidal signals) by computing the response for each component individually.

Linear phase

We often want a filter with linear phase.

$$x(n) \longrightarrow H(\omega) = A(\omega)e^{j\Phi(\omega)} \longrightarrow y(n)$$

$$x(n) = \sin(\omega_0 n)$$

$$y(n) = A(\omega_0) \sin(\omega_0 n + \Phi(\omega_0))$$
$$= A(\omega_0) \sin\left(\omega_0 \left(n + \frac{\Phi(\omega_0)}{\omega_0}\right)\right)$$

If $\Phi(\omega_0)/\omega_0$ is constant for all ω_0 , then $\Phi(\omega)$ is a straight line in ω . In other words, the filter has linear phase. A filter with linear phase delays all frequencies by the same amount. The time

$$\tau_g = -\frac{\mathrm{d}\Phi(\omega)}{\mathrm{d}\omega} \tag{41}$$

is called the *group delay*.

Example of a filter with linear phase

Given: The impulse response $h(n) = \{ \begin{array}{cc} 1 & 2 & 1 \\ \uparrow & \uparrow \\ \end{array} \}$. **Find:** The phase response of $H(\omega)$.

Find: The phase response of $H(\omega)$.

Solution:

$$H(\omega) = 1 + 2e^{-j\omega} + e^{j2\omega}$$
$$= e^{-j\omega} \cdot \left(e^{j\omega} + 2 + e^{-j\omega}\right)$$
$$= e^{-j\omega} \cdot \left(2 + 2\cos(\omega)\right)$$
$$= A(\omega) \cdot e^{+j\Phi(\omega)} \quad A(\omega)$$

In Matlab: freqz([1 2 1],1)

In Maltlab: freqz([1 2 2],1)

