Lecture 7

Digital Signal Processing

Chapter 5

LTI system
Signals in linear systems






Linear time invariant systems

Difference equations:

N M
n)+ Zaky(n —k) = Zbkx(n— k)
k=1 k=0

The z-transform:
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We have two kinds of difference equations.

e An FIR system has g, = 0 for all k # 0. An FIR system therefore has no feed-

back. The impulse response is h(n) = { by by - by } which is the same as
the coefficients of the difference equation.

e An IIR system has a; # 0 for some k # 0. An IIR system therefore has some

feedback.



Fourier transform

If h(n) is causal and stable we have the identity
H(w)=H(z)  where z=e¥

and therefore
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Sinusoidal signals and LTI systems

x(n) — h(n) —— v(n)

We want to determine the output signal from an LTl-system, we have
two cases;

A) The input signal is causal and the Z-transform exists

We solve this by using the Z-transform, Y(z) = H(z)X(z) and calculate
the inverse Z-transform

B) The input signal has (an infinite length) non-causal part

We solve this by using the convolution sum (we cannot use the Z-
transform since it does not exist for the input signal)



A) Numerical solution in Matlab

First determine a numerical solution in Matlab.

Given: The input signal

x(n) = cos(27t - 11_6 - n)- u(n)

and the system

o1 _ 2

H —
(2) 1—-1.2721 40,8122

Find: Determine numerically the output signal y(1) = x(1n) = h(n).



>> n = 0:60;
> b = [0, 1, -1]; We /17:?0/
>> a = [1, -1.27, 0.81]; O 1 o
>> x = cos(2*xpi*n/16); H(z) = rz —z
>> y = filter (b, a, x); 1-1.27z71+0.81z2
>x plotdn,; vJ)3
2

Compare with slide 14)
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We get y(n) = transient solution + stationary solution.



A) Solution using the z-transform

Given: The input signal and the system
1 1 —z~? N(z
x(n):cos(Zn-—*n)-u(H) Hiz) = el = \2)
16 ) 1-1.27z71+0.81z7% = D(z)
This signal is causal and we can determine its z-transform. T
nota 7L)'0 N
1 —cos(wg)z™? i
X(z) = = 2 TZ
(2) 1 —2cos(wg)z™t +z72 WO /



N (z) 1 —cos(wg)z ™!
D(z) 1-2cos(wg)z=t +z72

Pé’/"élZ/ Nl(z)+ Co+Crz-]
{f@(AU/\ D(z) 1-2cos(wy)z -1 4 2-2

e

Yiz)=HZ)X(Z)=

y(n) = transient solution + Acos (won) + Bsin(w
trang
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If we want the whole solution we have to determine the partial fraction expansions
N;(z) and N,(z) = Cy + C;z~! and do the inverse z-transforms.

H (2) X(%}

Y(z
(2) = 1—12721+08122 1—2cosa)ozl+z2
Use for instance _ -1 _ -1
Matlabs function ——-0.35. 1-4.177z +0.35- 1-1.8962
residuez.m 1-1.27z71+0.81z72 1 —2cos(wy)z™! +2z72

- g 1—0.9c05(%)z_1 5.5629'Sin(%)2_1
T 1-1.27z"1 +0.81z_2+0‘35 . 1-1.27z-14+0.812z2
Slh/"/ax

""""""""" < cos(wg)! (cos(wp) ~ 1.896) 2 Fr7y
L +0.35. S9\Wo) = 1-970)Z  Sinfw,

I - :
.Compare with : +0.35. L
| Lecture A1 | 1 —2cos(wy)z™! +z 1 —2cos(wg)z! +2z72
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Now, using known tables of formulas we get the inverse Z-transform as;

1 1
y(n) =-0.35-0.9" - cos (271 '3 n) +0.35-5.562-0.9" sin(Zn g

\_

ff“ans{eﬂ t
+0.35-cos(wgy-n)—0.35-2.5392 -sin (wy - n)
\— — 7

S ‘(L& {“/'U/\af‘j
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Plot the solution in Matlab.

>> n = 0:80;

>> yt = -0.35*%0.9."n.*cos(2*xpi*n/8) + 0.35*x5.562*%0.9. n.*xsin(2*pi*n/8);
>> ys = 0.35%xcos (2*%pi*n/16) - 0.35%2.5392*xsin (2*pi*n/16);

>> gubplot (3, 1; 1): plotln, ¥vE);

>> subplot (3, 1, 2); plot(n, ys);

>> subplot(3, 1, 3); plot(n, yt+ys);

The transient solution:

2

1

. /\ /\vn | Time [n] |
\/ 10 \./ 20 30 40 50 60
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The stationary solution:

Compare with slide 18)

- Ys(n) =0.95-cos(won —1.19)

ANV ANVANY |
N "V

0.95 ~ ,/(0.35"2 + (0.35 * 2.5392)"2)
1.19 =~ tan~1(0.35 * 2.5392/0.35)

The output signal as the sum of the stationary and the transient solutions.

Compare with slide 8)
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We will show that the stationary solution is given by

?st(n) = |H(ZU)| . COS((UOH + LH(ZO)) where Zi= ejmu

/

B) Non-causal input signal of infinite length

Solution without the transient state

The sinusoid is started at n = —co and the transient part of the solution has now dissi-
pated.
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We start with a complex sinusoidal signal, see page 301-306.

xo(n) = e 0"

k=—c0
oo
= Z h(k)e_j“""ﬂkej':‘)'i)M
k=—c0

 Hiwg)-n = Hfor) %00
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For the whole sinusoidal signal, using both terms of Euler’s formula, we get

- [x0(n) + xp(1)]

1 . - 1
= — = it g =i — =
x(n) = cos(won) = > [e ++@ ] >

V(”) = = [H(CUO) . ejwoﬂ + H*(a)o) . e_jCUU”]

= |H(C{)0)| . COS((U()TI G [H(Ct)o))
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In Matlab:;

> >
> >
>>
>>
b

w0
num
den
HO
abs

ans

al s

= 2%pi/16;
= exp(-i*w0)

= 1-1.27*exp(-i*w0)+0.81*xexp(-i*2*w0) ;

= num/den;

- exp(-1i*2*w0) ;

(HO), angle (HO)

0.9546

1.1956

Yer(n) = 0.95

-cos(won—1.19)

Recall, we had;

Z—J

_z_2

H(z)

T 1-1.272-1+0.8122

Z-\pgj

Compare with slide 14)

Wy
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NOTE: This only applies after any initial conditions have dissipated from the sys-
tem. For an FIR filter of length L, this is after L—1 samples. This is called the stationary
solution, or the steady state solution.

NOTE: This only applies for sinusoidal signals, or for a composite signal (the sum
of two or more sinusoidal signals) by computing the response for each component
individually.
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Linear phase

We often want a filter with linear phase.

x(n) —| H(w) = A(w)e)?@) — y(n)

x(n) = sin(wgn)

y(n) = A(wg) sin(won + P(wy))

= A(wg)sin (wo (n + el CL), ))

Wy
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[f D(wq)/wq is constant for all g, then @ (w) is a straight line in w. In other words, the
filter has linear phase. A filter with linear phase delays all frequencies by the same
amount. The time

_ dO(w)
e =7 dw

(41)

is called the group delay.

21



Example of a filter with linear phase

Given: The impulse response h(n):{l 2 1}.

»‘\

Find: The phase response of H(w). /'=9

Solution:
H(w)=1+2e7% 4+ &l%2@
_ e—jw ' (ejw n 2_|_e—j(u)

e,

= A(w) - ePP@) Alw

D(w) =-w
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In Matlab:

fregz([121],1)
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In Maltlab:
freqz([12 2],1)
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—
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