Lecture 8

Digital Signal Processing

Chapter 5

LTI systems

Convolution and the z-transform Example E3.3

Given: The system

$$y(n) - y(n-1) + \frac{3}{16} \cdot y(n-2) = x(n)$$

where

$$x(n) = \left(\frac{1}{2}\right)^n \cdot u(n) + \sin\left(2\pi \cdot \frac{1}{4} \cdot n\right)$$

Find: The output signal y(n). Also find the impulse response h(n)!

Solution:

$$H(z) = \frac{1}{1 - z^{-1} + \frac{3}{16} \cdot z^{-2}} = \frac{z^2}{z^2 - z + \frac{3}{16}} = \frac{z}{(z^2 - z + \frac{3}{16})} = \frac{z}{(z^2 - p_1)(z^2 - p_2)} = \frac{1}{(z^2 - p_1)(z$$

The poles of the filter is given by

$$z^2 - z + \frac{3}{16} = 0$$
 \rightarrow $p_1 = 0.25$ and $p_2 = 0.75$

$$H(z) = \frac{1}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})} = \frac{-0.5}{1 - p_1 z^{-1}} + \frac{1.5}{1 - p_2 z^{-1}}$$

$$\Rightarrow h(n) = (-0.5 \cdot 0.25^n + 1.5 \cdot 0.75^n) u(n) = |mpu| se response$$

Split the input signal into the two terms

$$x(n) = \left(\frac{1}{2}\right)^{n} \cdot u(n) + \sin\left(2\pi \cdot \frac{1}{4} \cdot n\right)$$

$$\times_{1}(n) \times_{2}(n)$$

First term

$$x_{1}(n) = 0.5^{n} \cdot u(n) \qquad \text{LI}(2) \qquad x_{1}(2) = \frac{1}{(1 - 0.25z^{-1})(1 - 0.75z^{-1})} \cdot \frac{1}{1 - 0.5z^{-1}} = \begin{cases} \text{Partial} \\ \text{fraction} \end{cases} = \frac{\frac{1}{2}}{1 - 0.25z^{-1}} + \frac{\frac{9}{2}}{1 - 0.75z^{-1}} - \frac{4}{1 - 0.5z^{-1}} \end{cases}$$

The inverse transform gives

$$y_1(n) = 0.5 \cdot 0.25^n \cdot u(n) + 4.5 \cdot 0.75^n \cdot u(n) - 4 \cdot 0.5^n \cdot u(n)$$

Second term

$$x_2(n) = \sin(\omega_0 n)$$
 where $\omega_0 = 2\pi \cdot \frac{1}{4}$

$$y_2(n) = |H(\omega_0)| \cdot \sin(\omega_0 n + \angle H(\omega_0))$$

Calculate

$$H(\omega_0) = H(z \mid z = e^{+j\omega_0}) = \frac{1}{1 - e^{-j\omega_0} + \frac{3}{16} \cdot e^{-j\omega_0}} = 0.77 \cdot e^{-j0.88}$$

$$\omega_0 = 2\pi \cdot \frac{1}{4}$$

We had
$$H(z) = \frac{1}{1 - z^{-1} + \frac{3}{16} \cdot z^{-2}}$$

which gives

$$y_2(n) = 0.77 \sin\left(2\pi \cdot \frac{1}{4} \cdot n - 0.88\right)$$

First and second part

The final solution is given by the sum of the two individual solutions.

$$y(n) = y_1(n) + y_2(n)$$

$$= 0.5 \cdot 0.25^n \cdot u(n) + 4.5 \cdot 0.75^n \cdot u(n) - 4 \cdot 0.5^n \cdot u(n) + 0.77 \sin\left(2\pi \cdot \frac{1}{4} \cdot n - 0.88\right)$$

Filters

Suppose that we have a signal that is disturbed by a sinusoidal signal.

$$x(t) = s(t) + \sin(\Omega_0 t)$$
 where $\Omega_0 = 2\pi \cdot 1250$ or $F_0 = 1250$ Hz.

Start by sampling the signal with the sampling frequency $F_s = 10000 \,\mathrm{Hz}$.

$$x(n) = s(n) + \sin(\omega_0 n)$$

where

$$\omega_0 = 2\pi \cdot \frac{F_0}{F_c} = 2\pi \cdot 0.125 = 2\pi \cdot 3$$

We want to suppress the tonal disturbance so we need to construct a filter which has $H(\omega_0) = 0$

The output is then given by

$$y(n) = h(n) * s(n) + |H(\omega_0)| \cdot \sin(\omega_0 n + \angle H(\omega_0))$$

$$H(\omega) \cdot S(\omega) = 0$$

$$S(\omega) \qquad \text{for } \omega_0 = 2\pi \frac{1}{8}$$

In terms of poles and zeros, the filter must have zeros at

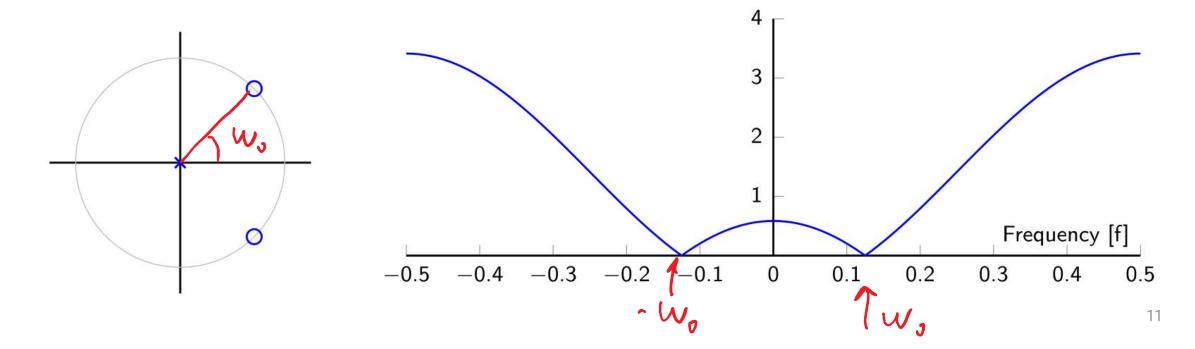
$$n_{1,2} = e^{\pm j\omega_0} = e^{\pm j2\pi \cdot 0.125}$$

We can choose between an FIR filter or an IIR filter.

Notch FIR filter

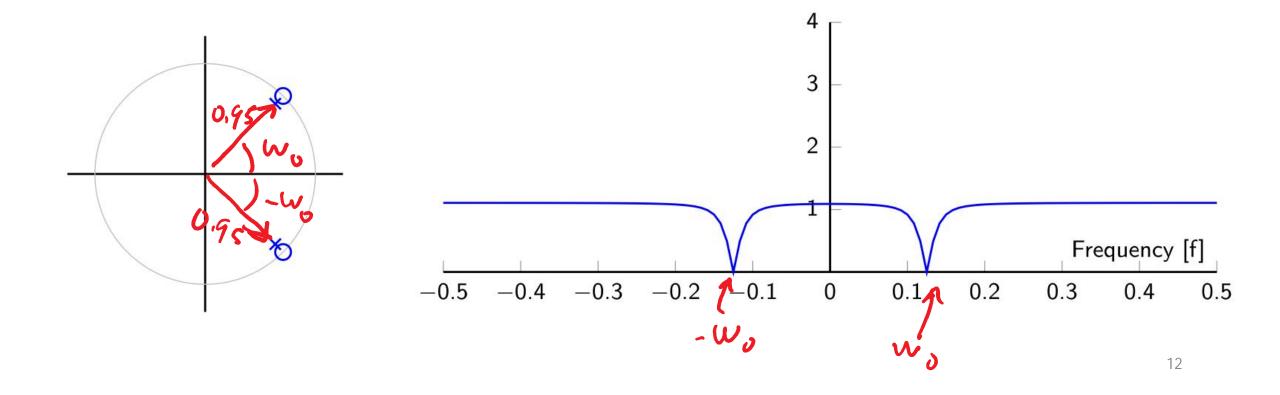
$$H(z) = \frac{(z - e^{-j\omega_0})(z - e^{j\omega_0})}{z^2} = \underbrace{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Pole-zero diagram and amplitude response:



Notch IIR-filter

$$H(z) = \frac{\left(z - e^{-j\omega_0}\right)\left(z - e^{j\omega_0}\right)}{\left(z - \alpha e^{-j\omega_0}\right)\left(z - \alpha e^{j\omega_0}\right)} = \frac{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}{1 - 2\cdot 0.95\cdot \cos(\omega_0)z^{-1} + 0.95^2\cdot z^{-2}}$$



Matlab examples;

```
[x,Fs]=audioread('Speech.wav');
soundsc(x,Fs);
n=0.1*cos(2*pi*1/8*(1:length(x)))';
y=x+n;
soundsc(y,Fs)
p1=0.95*exp(-1i*2*pi*1/8);p2=conj(p1);
n1=exp(-1i*2*pi*1/8); n2=conj(n1);
B=poly([n1,n2]); A=poly([p1,p2]);
z1=filter(B,1,y); figure, zplane(B,1), figure,
freqz(B,1), soundsc(z1,Fs)
z2=filter(B,A,y);figure,zplane(B,A),figure,
freqz(B,A), soundsc(z2,Fs)
```

Linear phase

From Lecture 7: Slide 20

We often want a filter with linear phase.

$$x(n) \longrightarrow H(\omega) = A(\omega)e^{j\Phi(\omega)} \longrightarrow y(n)$$

$$x(n) = \sin(\omega_0 n)$$

$$y(n) = A(\omega_0)\sin(\omega_0 n + \Phi(\omega_0))$$

$$= A(\omega_0) \sin \left(\omega_0 \left(n + \frac{\Phi(\omega_0)}{\omega_0} \right) \right)$$

FIR filter with linear phase

An FIR filter with linear phase has a symmetric impulse response.

	Symmetry	Description	Filter property (a)
2/	h(n) = h(-n)	Symmetry around 0.	$H(\omega)$ real. $H(\omega) = 0$
5/	h(n) = h(N - n)	Symmetry around $N/2$.	$H(\omega)$ linear phase.
c/	h(n) = -h(N-n)	Anti-symmetry around $N/2$.	$H(\omega)$ linear phase.

Example:

• Symmetric impulse response around n = 0.

$$h(n) = \left\{ \begin{array}{ccccccc} 1 & 2 & \underline{3} & 2 & 1 \end{array} \right\}$$

5)

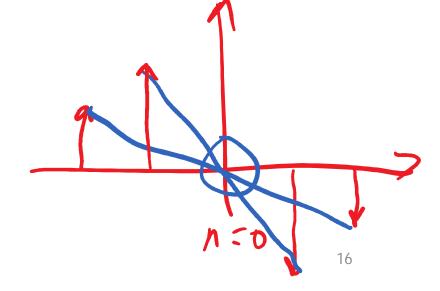
• Causal symmetric impulse response.

$$h(n) = \left\{ \begin{array}{ccccc} \underline{1} & 2 & 3 & 2 & 1 \end{array} \right\}$$

C)

Causal anti-symmetric impulse response.

$$h(n) = \left\{ \begin{array}{cccc} \underline{1} & 2 & 0 & -2 & -1 \end{array} \right\}$$



Show that $H(\omega)$ has a linear phase.

$$H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$$

$$H(\omega) = 1 + 2e^{-j\omega} + 3e^{-j2\omega} + 2e^{-j3\omega} + e^{-j4\omega}$$

$$= \left(e^{j2\omega} + 2e^{j\omega} + 3 + 2e^{-j\omega} + e^{-j2\omega}\right) \cdot e^{-j2\omega}$$

$$= \left(3 + 4\cos\omega + 2\cos2\omega\right) \cdot e^{-j2\omega}$$

$$= \left|(3 + 4\cos\omega + 2\cos2\omega)\right| \cdot e^{-j2\omega + j\pi \cdot k} \quad \text{for } k \text{ integer}$$

$$|\zeta = 0 \quad \text{if } \geq 0 \quad \text{if } \geq 0$$

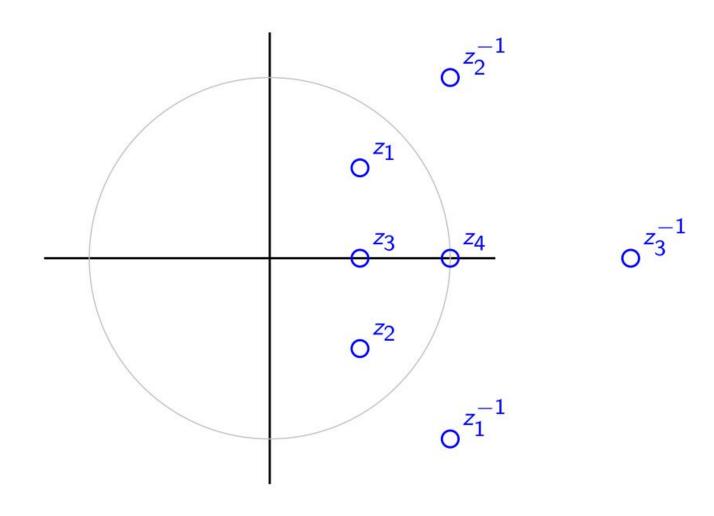
Pole-zero diagram

What does linear phase look like in a pole-zero diagram?

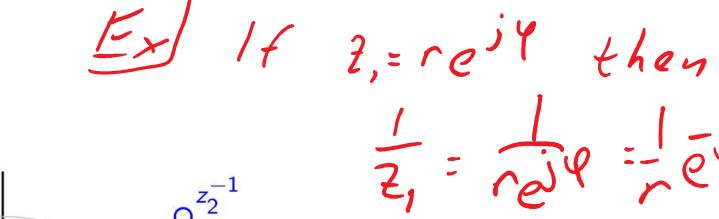
$$H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$$
$$= z^{-4} \cdot \left(z^4 + 2z^3 + 3z^2 + 2z + 1\right)$$
$$= z^{-4} \cdot H(z^{-1})$$

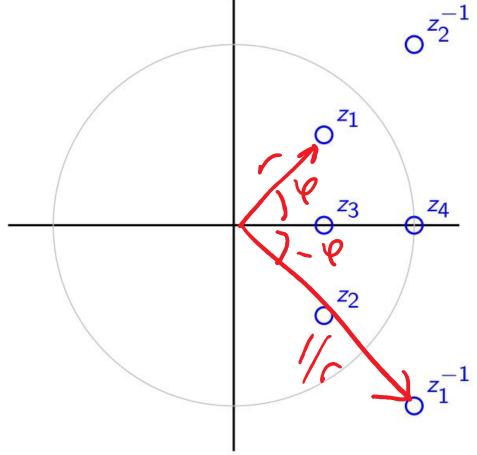
If z is a zero then z^{-1} must also be a zero.

Illustration



Illustration





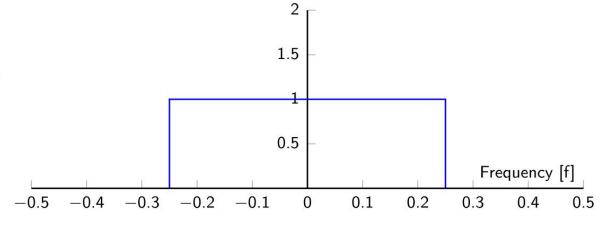
$$c_3^{z_3^{-1}}$$

Filter types

Ideal low pass filter

A non-causal ideal low pass filter is defined as

$$H_{\text{ideal}}(\omega) = \begin{cases} 1 & |\omega| < \omega_c \\ 0 & \text{otherwise} \end{cases}$$



The impulse response is

$$h(n) = \frac{\omega_c}{\pi} \cdot \frac{\sin \omega_c n}{\omega_c n}$$

A causal low pass FIR filter can be obtained by selecting N (choose N odd) values around the origin and then delay the impulse response by (N-1)/2.

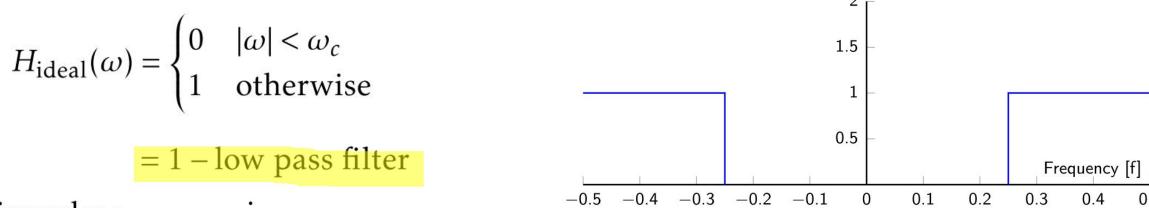
$$h(n) = \frac{\omega_c}{\pi} \cdot \frac{\sin \omega_c \left(n - \frac{N-1}{2}\right)}{\omega_c \left(n - \frac{N-1}{2}\right)}$$
(37)

Ideal high pass filter

A non-causal ideal high pass filter is defined as

The impulse response is

$$h(n) = \delta(n) - \frac{\omega_c}{\pi} \cdot \frac{\sin \omega_c n}{\omega_c n}$$



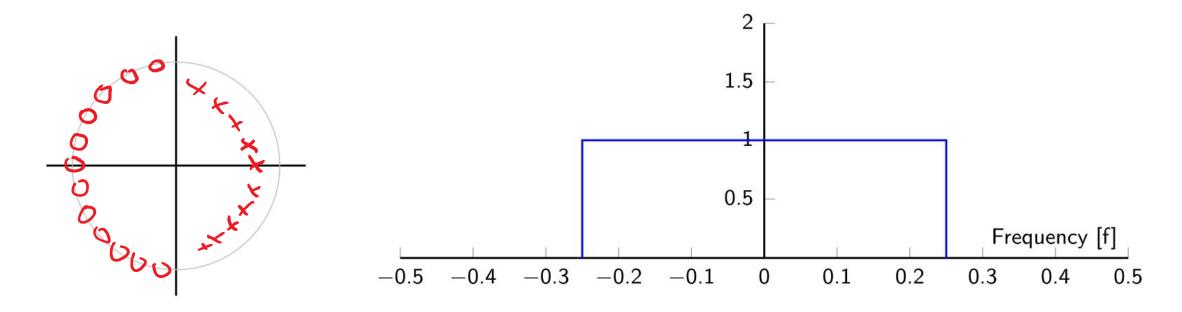
A causal high pass FIR filter can be obtained by selecting N (choose N odd) values around the origin and then delay the impulse response by (N-1)/2.

$$h(n) = \delta\left(n - \frac{N-1}{2}\right) - \frac{\omega_c}{\pi} \cdot \frac{\sin\omega_c\left(n - \frac{N-1}{2}\right)}{\omega_c\left(n - \frac{N-1}{2}\right)}$$
(41)

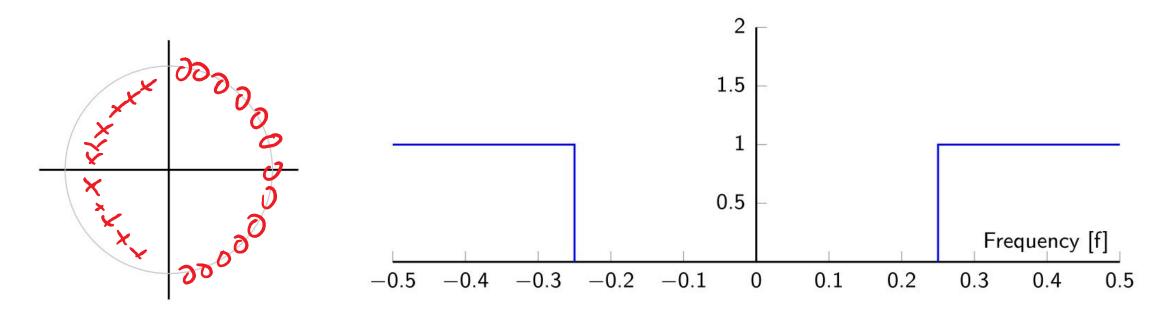
Classification of filters

Suggest a pole-zero placement for the filter types (page 330–346).

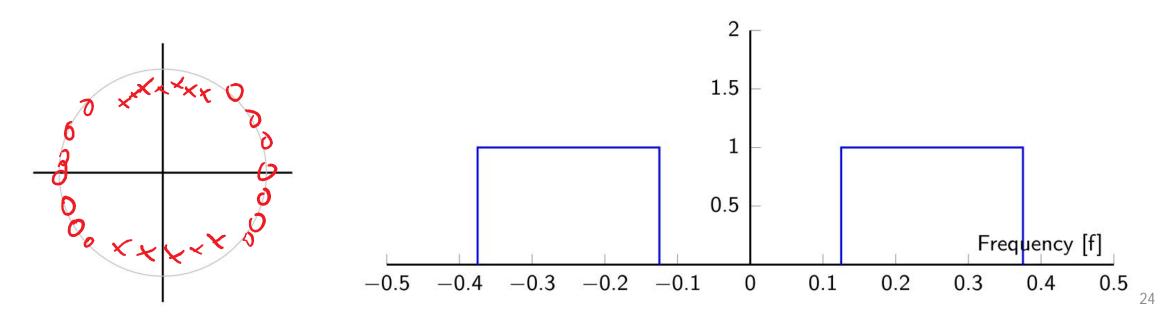
Low pass filter:



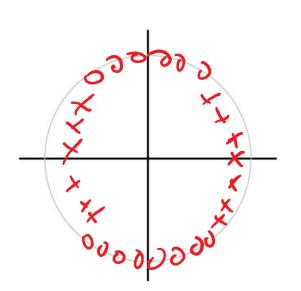
High pass filter:



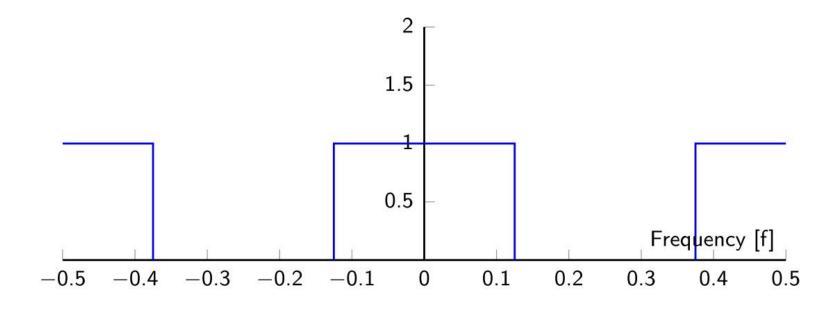
Band pass filter:

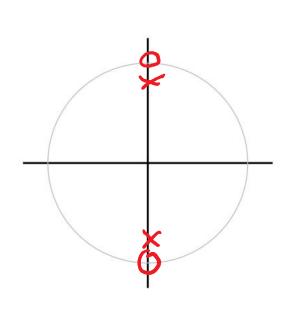


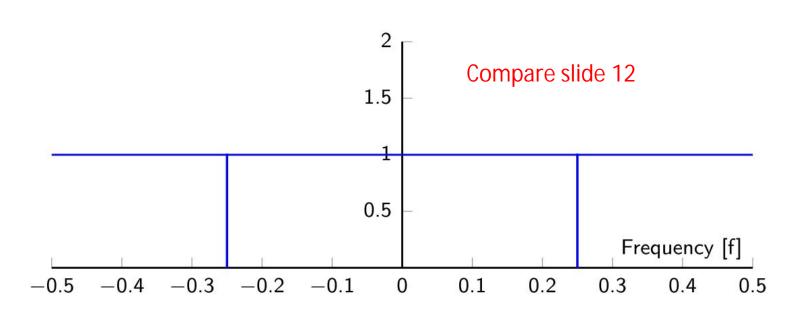
Band stop filter:



Notch filter:







Minimum and maximum phase systems

Def:

A system H(z) with all the zeros inside the unit circle is called a minimum phase

system

Def:

Likewise, a system H(z) with all the zeros outside the unit circle is called a maximum

phase system

Def:

A system H(z) with zeros both inside and outside the unit circle is called a *mixed phase* system.

We often want minimum or linear phase systems.

Causal FIR and IIR filters

FIR filters:

- The impulse response is of finite duration.
- The filter is always stable.
- All poles are at the origin.
- The filter may have linear phase.

IIR filters:

- The impulse response if of infinite duration.
- The filter is stable if and only if all poles lie inside the unit circle.
- The filter cannot have linear phase.

Connection between the number of poles N_p , the number of zeros N_z and the impulse response h(n):

$$N_p = N_z$$

For example a pole and zero, with the impulse response

$$h(n) = \left\{ \begin{array}{ccc} \underline{1} & 1 & 0 & \dots \end{array} \right\} \quad \Rightarrow \quad H(z) = 1 + z^{-1} = \frac{z - 1}{z}$$

 $N_p = N_z + 1$ For example a pole and two zeros.

$$h(n) = \{ 0 \ 1 \ 1 \ 0 \ \dots \} \Rightarrow H(z) = z^{-1} + z^{-2} = \frac{z-1}{z^2}$$

Conclusion:

If the number of poles is greater or equal to the number of zeros, the system is causal. This applies generally for both causal FIR filters and causal IIR filters.